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I. Phys. A Math. Gen. 27 (1994) 2251-2268. Printed in the UK 

The Hausdorf dimension of the Apollonian packing of circles 

Peter B Thomast$ and Deepak Dhars 
Theoretical physics Group, Tam InstiNte of Fundamental Research Homi Bhabha Road, 
Bombay 400 005, India 

Received 1 December 1993 

Abstract. We formulate the problem of determining the Hausdorf dimension, d j ,  of the 
AptIonian packing of circles as an eigenvalue problem of a linear integral equation. We 
show that solving a finite-dimensional approximation to this infinite-order matrix equation 
and extrapolating the results provides a fast algorithm for obtaining high-precision numerical 
estimates for d f .  We find that d, = 1.305686729(10). This is consistent with the rigorously 
known bounds on d f .  and improves the precision of Lhe existing estimate by three orders of 
magnihlde. 

1. Introduction 

The problem of tiling a plane with circular discs of variable radii is a very old one, and 
tradition associates the simplest of these with Apollonius of Perga in 200 BC. An illustration 
of the Apollonian packing is given in figure 1. One star ts  with three touching discs with 
arbitrary curvatures. Inside the resulting curvilinear &angle’is inscribed a new circle, 
touching the other three. The process is repeated in each of the resulting curvilinear triangles 
ad infinitum. If the discs are open, that is, if they exclude all the points on their perimeters, 
then the residual set of points that do not fall within any of the discs form a fractal set that 
has been called the ‘Apollonian gasket’. 

This tiling has been popularized by Mandelbrot [l], and it has been suggested at various 
times a model for mechanical gear-works, turbulence, textures of smectic liquid crystals 
and soap solutions, the motion of tectonic plates of the earth during earthquakes, etc. A 
somewhat recent review of the known results on the subject can be found in the book by 
Falconer [2]. The relation between the curvatures of mutually touching circles (or spheres) 
in two and three dimensions was first obtained by Soddy, who expressed it in a poem ‘The 
Kiss Precise’ [3]. A generalization to N dimensions was obtained by Gosset [4]. A very 
elegant proof of this generalization’may be found in a recent paper by Soderberg [SI. 

A problem that has been of interest for the past severaI decades is that of determining ‘the 
Hausdorf dimension df of the Apollonian gasket. It has been conjectured that, amongst the 
various different possible disc tilings of a plane, the Hausdorf dimension is the smallest for 
the Appolonian tiling 161. One of the reasons for the enduring fascination of this probIem 
has been its difficulty. It was first considered by Hust [7] who showed that df was strictly 
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Figure 1. The Appolonian gasket that is generated from lhe curvilinear hiangle bounded by 
two unit circles and a straight line (circle with zero mature ) .  

greater than 1, and had an upper bound of log3/ log(1 + 2&). In a series of papers, Boyd 
[8,9] found that 

1.300 197 < d f  < 1.314534 (1.1) 

which are still the best known rigorous bounds. A heuristic estimate obtained by M e l d  
was d f  % 1.306951 [lo]. A recent numerical study by Manna and H e r "  1111 gave the 
improved estimate 

df = 1.305684~0.000010. (1.2) 

The problem has a rich mathematical structure and symmetry. The tiling can be 
generated by three specific Mobius transformations of the form (ctz + @)/(yt + 6) in the 
complex plane. The three transformations can be expressed in terms of three complex 
2 x 2 matrices formed out of a, f i ,  y and 6. These are generators of a discrete subgroup of 
SL(2, C) which is, in fact, the symmetry group of a regular graph-like struchwe in a three- 
dimensional manifold of constant negative curvature [5]. Instead of using the three complex 
2 x 2 matrices, one could use three integer 4 x 4 mahices [7]. In particular, this implies 
that if the curvatures of the three circles in the outer curvilinear triangle are 1, l  and C., then 
the curvatures of all the inscribed circles will also be integers. The problem of determining 
df becomes equivalent to that of determining the properties of random products of non- 
commuting matrices. Under a similarity transformation, these integer matrices transform 
into three special Lorentz boosts operating on light-like vectors, and they are therefore the 
generators of a. discrete subgroup of the Lorena group SO(1.3) [5]. For the Apollonian 
tiling on a sphere one has the same Lorentz boosts, but they operate on time-like vectors. 
The Apollonian tiling can thus be thought of as the problem of finding the distribution of 
velocities for a rocket which is given n impulses randomly, in three different directions by 
three jets fixed to the rocket. 

Another reason why we chose to study this problem comes from the interesting structure 
of the functional equation it gives rise to. In the renormalization group approach to 
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describing critical phenomena, one finds that physical quantities such as. say, the free 
energy, satisfy functional equations of the form 

f&’) = c + af [ W ) 1  (1.3) 

where the components of x are the relevant coupligs in the problem and R(z) is the 
renormalization goup transformation (in general nonlinear) of x under scale changes, and 
a is a positive constant. The unstable fixed points of (1.3) correspond to the critical points 
in the model, and one can study the singularities of f  by linearizing the recurrence relations 
around these points. A simple generalization of (1.3) is the equation 

where RI and R2 are different transformations of z, and a, and a2 are positive constants. 
Such equations do not in general have fixed points, but much more complicated fractal 
attractors, and have not been subjected to much study. One expects these to be of possible 
relevance in systems subjected to two or more competing ‘flows’, as, for example, in 
turbulence. In this paper, we have formulated the problem of finding dj  in terms of solving 
a functional relation of this kind. In this problem, we have RI, Rz and R3 as three linear 
hansformations. However, even in this simple case we are not able to find dj  analytically. 
But we show that the numerical solution of a functional equation similar in shucture to 
(1.4) provides an efficient algorithm to determine d j .  For example, using only moderate 
computing power we are able to improve the precision of the estimate of Manna and 
Hermann by three orders of magnitude. 

The paper is organized as follows. In section 2 we formulate the problem in terms 
of solving an infinite system of coupled linear equations. Then in section 3 we discuss a 
similar but simpler problem that is exactly solvable, and show that it has an infinite number 
of solutions. We then discuss the additional conditions that have to be imposed on the 
solution to make it unique. In section 4 we describe our numerical algorithm, and present 
our results. 

2. Formulation of the problem 

Suppose a ,  b and c are the curvatures of ,the sides of a curvilinear triangle, and s is the 
curvature of the inscribed circle. The value of s can be obtained in terms of a ,  b and c by 
elementary geometry, and is given by the Soddy formula, 

s = a  + b  + c +  2d where d d a b  + bc + ca .  

Equivalently, this can be written as 

2(a2 + b2 + c2 + s2) = (s + a  + b +c) ’ .  (2.2) 

Ifs’ is the curvature of the circle inscribed by the curvilinear triangle formed by the circles 
a ,  b and s, we see that s’ and c are the solutions of equation (2.2) treated as a quadratic in 
c for fixed a ,  b and s. This implies that s’ = 2a + 2.b + 2s - c.  We represent the curvilinear 
triangle (a ,  b,  c)  by a 4-vector X = (a ,  b, c ,  s). If Xi is the 4-vector corresponding to the 
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curvilinear triangle bounded by (s, b, c),  Xi to the triangle bounded by (a, s, b) and X; to 
the triangle bounded by (a, b, s), then 

P B Thomar and D Dhur 

X ; = A i X  i = l , 2 , 3  (2.3) 
where X T  = (a,  b, c, s), and 

0 0 0 1  1 0  0 0  1 0  0 0 

A I = (  0 1 0 0  , o) A . = ( .  0 0 0 1  .) - 4 3 = ( O  

O) 
0 0  0 1 .  

- 1 2 2 2  2 - 1 2 2  2 2 - 1 2  
(2.4) 

After n levels of iteration, one has 3" circles corresponding to the 3" different products of 
then matrices Aj).  Aj2 ,..., Ai.; j ,  = 1,2,3. The matrices A I ,  Az and A3 are known as 
the Boyd matrices 181. 

Let (si], i = 1 to 03, be the set of curvatures of all the inscribed discs in an Apollonian 
gasket that is bounded by three circles with curvatures a, b and c. We assume that these 
circles touch from the outside, so that a, b and c are non-negative. Let the si's be arranged 
in ascending order so that s1 < sz < s3 . . . . The M e l d  function is defined by 

05 

M ( a ,  b; c; x )  = Cs;' 
i-1 

(2.5) 

where x is some positive exponent. It is obvious that if x = 2 then M ( a ,  b,  c; x )  will be 
proportional to the area of the outermost curvilinear triangle, and if x = 0 then, since (s} 
is an infinite set, M diverges. Hence there must be a critical value xc such that M is finite 
for x > xc and infinite for x < x,. It is easy to see that xc is independent of a, b and c, 
and that in fact 

X, E d f  (2.6) 
the Hausdorfdimension of the gasket [91. Also, if N(s)  is the cumulative total of all circles 
having a curvature less than s, then N(s) - sdf for large s. This fact was exploited by 
Melzak [lo] and later, using faster computers, by Manna and Hermann [I 11. Their estimates 
have been given in the introduction. 

It is easy to see that the Melzak function satisfies the recursion relation 

M ( a ,  b, c; x )  = s - ~  + M ( s ,  b, C; X )  + M(a ,  s, C; X )  + M ( a ,  b, s; X )  (2.7) 
where s is the curvature of the circle inside the curvilinear triangle bounded by thee circles 
of curvatures a, b and c. M is a smooth, continuous, homogenous function of a, b and c, 

(2.8) 
As x + x,, M diverges as (x  - xJ1. Near x,, we can expand M ( a ,  b, c; x )  in a power 
series in (x  - xc),  

M ( a ,  b, C; x )  = 
x - x ,  

Multiplying (2.9) by ( x  -xc )  and taking the limit x + x,, we see that M-l(a, b ,  c) satisfies 
the homogenous equation 

M(Aa, Ab, Ac; x )  = A-'M(a, b, c; x ) .  

+ M&, b, c)  + terms of order ( x  - xc) . (2.9) 
&(a, b, C )  

M - ~ ( u , ~ , c ) =  M-i(s,b,~)+M-i(~,s,~)+M-i(a,b,s). (2.10) 

In our method, we numerically determine M-l(a, b, c), and also at the same time find xc. 
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Figure 2. The subset of rhe Appolonian gasket which consists only of cuds  touching the 
straight line. 

3. Boundary conditions 

Equation (2.7) is of the form mentioned in (1.4), with three competing transformations, and 
does not have a simple fixed point. In fact, as we will proceed to show, there are an infinite 
number of solutions to the homogenous equation (2.10). Thus it needs to be supplemented 
with the correct boundary conditions, so that its solution is consistent with the definition 
(2.5). We first illustrate this by considering a simpler gasket, with similar properties. 

3.1. An illustrative example 

Consider a gasket that is generated by starting with a straight line and two mutually touching 
unit circles. An open circle is inscribed, touching all the sides of this curvilinear triangle. 
The process is repeated indefinitely for all the new curvilinear triangles, containing the 
straight line as one of its sides. The resulting set of points belonging to the circumference 
of at least one of these circles defines this gasket. Its construction is shown in figure 2. It 
happens that the Hausdorf dimension of this gasket has the trivial value unity. However, 
it is instructive to consider this case since the recursion relation analogous to (2.7) for this 
gasket has similar properties to (2.7) itself and can be solved analytically. 

As for the Apollonian case, let ( t i } ,  i = 1 to 00, be the set of curvatures of all the 
circles in this gasket arranged in ascending order, with a and b being the curvatures of its 
two outennost circles. Define 

CO 

G(a, b; x )  = t F x .  
i=l 

This definition of G(a, b;  x )  implies the scaling property 

G(Aa, Ab; x )  = A-”G(a, b; x ) .  

(3.1) 

(3.2) 



2262 P B Thomas and D Dhar 

At the nth iteration, there will be 2" curvilinear triangles, each with a straight line as one 
of its sides. If a and b are the curvatures of the other two sides and t the curvature of the 
inscribed circle, then by putting c = 0 in the Siiady formula (U), we have 

t = ( & + q .  (3.3) 

In order to find the distribution function N@), we define 01 = f i  and 8 = A. We now 
observe from (3.1) that G(a, b;  x )  can be written as 

where the summation runs over integers nl and n2, 1 < nl < 00.1 < nz < 00 and C(n1, nz) 
is unity if nl and nz are mutually coprime and zero otherwise. Since for large n1 and nz, 
the mutually coprime pairs (nl, nz) are distributed roughly uniformly in the (nl nz) plane 
with asymptotic density 6/x2 1121, we get 

This integal converges for x z 1 and diverges for x < 1, which shows that the Hausdorf 
dimension of this gasket is unity. In fact, it follows from (3.5) that 

(3.6) 

It is clear from (3.1) that G(a, b; x )  satisfies the recursion relation 

G(a, b; x )  = (&+A)" + GO, b; x )  + G(a, t; x )  . (3.7) 

G(a, b; x )  has a first-order pole at x = 1 and can be written in the form 

From (3.8) we find that G-l(a, b) satisfies the homogenous equation 

G-i(a, b) = '3-1 ( t ,  b) + '3-1 (U. t )  . (3.9) 
Due to the two parameters a and b, we note that the recursion relations (3.7) or (3.9) do 
not have a simple fixed point. 

One can construct other solutions to this functional equation. For example, one finds 
by inspection that (3.7) has a solution for all x 

G ' ( u , ~ ; x ) = - -  -+- . ; (a: ;x) 
(3.10) 

This implies that if G is defined by (3.4) then for all positive k, (I + k)G - kG' is positive 
and satisfies (3.7). We have thus constructed an infinite number of solutions to (3.7), and 
it needs to be supplemented with boundary conditions to select the correct solution defined 
by (3.4). 

In order to find this boundary condition, we note that, for all x ,  G(1,O x )  is infinite. 
This is because the set It)  contains an infinite number of circles of unit radius, between two 
parallel straight lines. It is easy to see from (3.7) that 

G ( 1 , ~ ; x )  = (l+~~2T+G[(1+&)2,~;~]+G[l,(l+&)2;~]. (3.11) 

Combining (3.11) with the scaling property (3.2), we find that G(1, E ;  x )  must diverge as 
I/& for small E. 
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3.2. Boundary conditions for the recursion relations of the Melzukfunction 
As in the above example. one can also constmct spurious solutions to the recursion relation 
(2.7). For example, an obvious choice is to join the vertices of the centres of the circles. 
For any given curvilinear triangle, the area of the corresponding triangle formed from the 
centres then satisfies the homogenous equation 

A(a, b, C )  = A(s,  b, C) + A(& S, C) +.A(& b, S) (3.12) 
where A(a, b, c) = d a b  + bc + ca/abc. It is obvious that this is a spurious solution since, 
for example, it diverges when a = 1, b = 1 and c = 0, while the M-,(a, b, c) defined in 
(2.9) is finite. Further, it satisfies the homogenity property (2.8) only for x = 2. 

Therefore, as in the previous example, it is also important'to obtain the supplementing 
boundary conditions for the Apollonian case. We note that M(1, 0,O; x )  corresponds to 
adding xth powers of curvatures of circles starting from two pirallel lines and a unit circle. 
It is therefore clear that the ratio M(l,O,O; x ) / M ( I ,  1,O x )  is infinite for all values of 
x .  Arguments as in the previous section show that M(1, E ,  0; x ) / M ( l ,  1,O; x )  diverges as 
l/& for all x .  Keeping the symmetry of M under permutations ofa, b and c in mind, we 
see that M @ ,  b, c; x )  diverges as l / d  for all x ,  when d is small. Using (2.8) we find that 
the leading behaviour for small d is 

1 
d(a + b + ' 

M(a ,  b, c; x )  - (3.13) 

It is also easy to see from (2.5) and (2.8) that 

(2 + E  + QJ M U ,  1 + E ,  8; x )  - 2x M(1, 1.0; x )  [l +O(EZ)  +on] 
from which we find, by making an expansion around M(1,O.O; x) .  that at x = x,, 

(3.14) 

where K is a constant independent of a ,  b and c. One is therefore motivated to define a 
new function F,(a, b, c )  by the equation 

d(a + b + c ) ~ - ~  
(2x + l ) (a  + b + c)d2 - abc M ( a ,  b, c; n) = Fx(a, b, c) (3.16) 

Since the leading divergence of M is taken care of by the prefactor, the function F is finite 
for all a ,  b, c > 0. In fact, our numerical results show that F is a very slowly varying 
function, with maximum variation - 0.4% for x = xc. To leading order in d we can Write 

[ (a+b+cI2  Ud2  1 F,@, b, c) N_ Fz(l, 0.0) 1 + (3.17) 

where U is a function of x ,  but independent of U, b and c. Fx(I ,  0.0) is well behaved, and 
one finds by substituting (3.17) in (2.7) that in the limit (a,  b, c) + (LO, 0) 

22-1 
(3.18) 

1 
Fx(l,O, 0) = - + - w. 1,O). 2x-1 2x-1  

It is clear from (2.8) that 
F,(Aa, Ab, hc) = F&, b, c ) .  (3.19) 

Therefore we can assume, without loss of generality, that a + b + c = 1. If the initial 
choices of a, b and c are positive, then the relevent secrion of the plane is the equilateral 
triangle in the first octant, with vertices (1,0,0), (0,1,0) and (0, 0, 1). As is the case for 
the Melzak function, F,(a, b, c) is also invariant under permutations of a,  b and c .  It can 
be well approximated by extrapolation from its values at a few points. 
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4. Numerical algorithm for the estimation of xc 

In this section, we develop a systematic approximation scheme in terms of the levels of 
iteration of the recursion relation (2.7) to get high precision estimates for df. 

&(a, b, c) = CAa, b ,  c) + M a ,  b. c)  

P B Thomas ami D Dhar 

We rewrite (2.7) in terms of F,(a, b ,  c) 

b, c) 

+ LAb, c,  a) FAa, s, c)  + LAC, a ,  b) FAa, b.s) (4.1) 

where s is the curvature of the inner circle, given by the Sijddy formula (2.1). and 

(2x + l)(a + b + c)(ab + bc + ca) - abc 
sx(a + b + c)'-X(ab + bc + ca)1/2 

C A  b, c)  = 

( s  + b +c)'-~ [ sb + bc +cs] ' / '  
a + b + c  ab+ bc+ ca L d a ,  b,c) = 

(Zx + l ) (a  + b + c)(ab + bc + ca) - abc 
(2x + l)(s + b + c)(sb + bc + cs) - sbc 

(4.2) 

We note that if we start with positive a, b and c, then under the recursion the three new 
triplets are also all positive. Hence the recursion is closed on the equilateral triangle in 
the positive octant of the plane a + b + c = 1. In fact, if (4.1) is iterated repeatedly, then 
the resulting rescaled vectors (a, b ,  c) have a fiactal attractor on the triangle. The points 
(LO, 0) and ($, $, 0) (using (3.19) we can refer to this as the (1,1,0) point, and shall do 
so hereafter) lie on the attractor. The total attractor can be obtained recursively by starting 
from (a, 6 ,  c) = (I, 0,O) and its permutations, and iterating it indefinitely. The part of the 
attractor after nine levels of recursion is shown in figure 3. 

As the functional equation (4.1) relates the values of F on the attractor only to other 
points on the attractor, it is sufficient to solve the recursion relations for points only lying 
on the attractor by using (3.18) as the first equation, and then using (4.1) from the (1,1,0) 
point onwards. These form an infinite system of linear simultaneous equations, which can 
conveniently be expressed in matrix form, 

(Z - C)F = c (4.3) 

where Z is the identity matrix and L: is an infinite-dimensional square matrix. It is clear that 
C is an extremely sparse upper-triangular matrix, with three (in general) non-zero entries in 
each row. The formal solution of the simultaneous equations is 

F = (Z- L)- 'c .  (4.4) 

By definition, F,(a, b, c )  diverges at x = x,, and hence (Z - C) is singular at x = x,. We 
note that the norm of C decreases with increasing x .  Since for x x,, F,(a, b, c)  is well 
behaved, it follows that rhe marimum eigenvalue o fC  is unity at x = x,t. 

Approximations to x, can be obtained by truncating this matrix equation to n levels 
of iteration of the recursion relations. If we then use the permutation symmetry, there 

t Although the ma& C is upper-triangular with all iU diagonal elements zero, it can have non-trivial eigenvalues, 
since it is an infinite-dimensional matrix. 
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;"; 
Figure 3. The flactal attractor of the recursion relation for the M e w  function is generated by 
starting from the point (1,0,0) and its permutations. This figure has been generated &er nine 
levels of recursion. 

are (3" + 1)/2 new equations which do not close. We close the equations by using the 
smoothness of F and interpolating its value at the unknown points from its values at 
neighbouring points. We illustrate this procedure for n = 0 and n = 1 below. 

As a first approximation (n = 0), we assume that F,(l,O,O) w Fx(l, 1,O). Since 
F x ( l ,  0.0) and F.(l, LO) diverge at x = x,, we find, from (3.18), 

Solving this transcendental equation, we get the estimate 

x, 2: 1.307 85 (4.6) 

which is reasonably close to the correct value x, = 1.3057 given in 1111. 
For n = 1, we use the equation for F x ( l ,  1,0), 

Fd1.1,O) = CAI, 1,O) + 2L,(1, 1,O) F,(4, 1,O) + L,(O, 1, 1) Fx(4,1,  1). (4.7) 

This, along with the equation for Fx(l, 0,O) (equation (3.18)), forms two linear equations 
for F,(l,O,O) and Fx(l, 1,O). However, they are'not closed, since they also involve the 
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unknowns F,(4,1,0) and F,(4,1,1). We close the equations by taking into account the 
leading variation of F&, b, c )  on its arguments (3.17). From this we find that 

P B Thomas and D Dhar 

(4.8) 
9 Fz(4,l.O) 2 zjF,(l,O,O) t g F d ,  L O )  F,(4,1,1) N Fdl, 1,O). 

The equation is now expressed completely in terms of F,(l,O,O) and Fz( l ,  1,O). 
Combining (4.8) with (3.18). we have two linear simultaneous equations 

The solution of (4.9) for x, is determined by the transcendental equation 

51-* -- [ l8  + 2 3 + ~ ]  + (a, + 1)33-1c N 

25 2Xc-l 27(2xc + 1) - 2 - (4.10) 

which gives 

x, 2: 1.30574. (4.1 1) 

This is correct to four decimal places [ll]. 
For n > 2, we interpolate the value of F at any of the unknown points (a,  b, c) from 

its values at the three nearest points (ax, bl, c1). (a2. b2, cz) and (u3, &, c3) that enclose it. 
This is done by writing, for each new point (a, b, c).  

F , ( a , b , c ) = M F = ( a l , b l , c l ) + y z F , ( ~ ~ , b z , ~ z ) + y 3 F , ( ~ 3 , 9 , ~ 3 ) .  (4.12) 

Of the various interpolation formulae for yt. yz and M that we tried, we found empirically 
that the following approximation has good convergence in n: 

F,(u,b,c) c-p+qd’+r(abc) .  (4.13) 

The constants p .  q and r are allowed’to be different for different values of (a, b, c). They 
are determined for the unknown points in terms of the values of F at the points (a], bl, CI), 
(a2. b2- c2) and (4, b3, c3). We note that this interpolation formula respects the symmetry 
of F,(a, b, c) under the permutations of its arguments. 

The size of the truncated matrix at the nth level is 

3” + 2n t 3 
4 

Size(n) = (4.14) 

The resulting finite approximation to L (which we denote by Ln), is no longer upper- 
triangular, and therefore has non-trivial eigenvalues. We have determined the value of 
x(n)  when the maximum eigenvalue of Ln is unity, for n = 2 , 3 , .  . . , 11. We found that 
simple iteration of an arbitrary vector under repeated multiplication by L, converges very 
quickly. This also enabled us to exploit the sparseness of the mahix Ln. The entire data 
was computed in a few hours CPU time by a Silicon Graphics Iris 4D/310S machine. We 
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have extmpolated the solutions to n = 00 from x(n) ,  assuming exponential convergence, 
by the formula 

[x(n) - x(n - I)]' 
x ( n )  - 2r(n - 1) + x ( n  - 2) 

x*(n) x~(n)  - (4.15) 

by sequentially choosing three values of x ( n )  at a time. We have also calculated xt (n)  from 
x*(n) by assuming power-law convergence, 

(4.16) 

The constant k was obtained by taking two sequential values of x*(n) at a time. The results 
are shown in table 1. All computations have been done in double precision, and the numbers 
are correct to all the decimal places quoted in the table. The data for n = 0 and n = 1, 
have been computed explicitly earlier in this section ((4.6) and (4.1 1)). However, these 
have not been included since for n = 0 no interpolation was necessary, and for n = 1 we 
used two-point interpolation (4.8), while for n > 2 thee-point interpolation (obtained from 
(4.13)) was used. 

Table 1. Numerical results and exuapolation to n = m, 

n Size(n) x(n)  x'(4 x + ( n )  
2 4 1,30572039977 - - 
3 9 1.30569898371 - - 
4 23 1.30569077796 
5 64 1.30568808701 
6 186 1.30568721518 
7 551 1.30568692154 
8 1645. 1.30568681307 
9 4926 1.30568676929 

10 14768 1.30568674975 
11 44293 1.30568674031 

1.30568568085 - 
1.305 686 773 95 1.305 687 162 3 
1.30568679735 1.305 686 809 1 
1.30568677241 1.305 6867560 
1.30568674953 1.3056867309 
1.30568673965 1.305 6867300 
1.30568673401 1.3056867276 
1305 686731 50 1.305 686728 2 

A reasonable estimate from the data is that the Hausdorf dimension of the Apollonian 
gasket is 

df 2 1.305686729(10). (4.17) 

This is consistent with Boyd's rigorous bounds [91, and is also in good agreement with the 
numerical estimate of Manna and Hermann [I]. 

To summarize, we have made an improved numerical estimate of the Hausdorf 
dimension dr of the Apollonian gasket by formulating the problem in terms of determining 
the value of a smooth function &(a, b ,  c )  on a fractal set in an equilateral triangle. We 
have used a finite set of linea relations reIating the value of the function at some points 
on the triangle, and have used interpolation to approximate its value at others. Analytical 
determination of df remains an open problem. 
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